

SMART CONTRACT AUDIT

PUBLIC REPORT
Audit of Algogard Smart Contract

VPQ-20220023

Algogard

23rd March 2022

:

VPQ-20220023:Algogard Smart Contract Audit – Public Report

2

TABLE OF CONTENTS

1. Executive Summary .. 3

Overview .. 3

Vulnerability Overview ... 3

2. Project Details ... 5

Scope .. 5

Version History ... 6

3. Risk Assessment .. 7

Overview of Components and Their Vulnerabilities .. 7

1. Algogard Smart Contract Audit .. 7

4. Detailed Description of Vulnerabilities .. 9

2. Algogard Smart Contract Audit .. 9

1.1. Incorrect Enforcement of Fees Paid to Treasury During Liquidation .. 9

1.2. Incorrect Calculation Resulting in Zero Payout to Managers and Founders 11

1.3. Erroneous Subroutine Stops Liquidation From Execution After 46 Minutes 13

1.4. Insecure Storage of Mnemonic Seed Phrases .. 16

1.5. Incorrect Application Logic Limits Number of External Application Opt-In 17

1.6. Incorrect Assert Logic ... 19

1.7. Incorrect Value Set for Max Supply of DAO Token .. 20

1.8. Incorrectly Implemented For Loop Operations ... 22

1.9. Missing Algorand Standard Asset ID Checks during ASA Transfer .. 24

1.10. Insufficient On-Chain Validation Against Altered Transactions .. 27

1.11. Lack of Checks for Locking Vote App .. 38

1.12. Redundant Code .. 39

1.13. Price Oracle and DAO Manager ... 41

1.14. Incorrect Comments ... 43

5. Appendix .. 45

Disclaimer ... 45

Scope of Audit .. 45

VPQ-20220023:Algogard Smart Contract Audit – Public Report 3

1. EXECUTIVE SUMMARY

OVERVIEW

Vantage Point Security Pte Ltd was engaged by Tapera Inc. to conduct an independent security

assessment of the smart contracts comprising the Algogard Gard suite of services. The intent of the

review was to identify security vulnerabilities, weaknesses and any instances of non-compliance to

best practices or regulatory requirements. Testing commenced on the 3rd March 2022 and was

completed on the 23rd March 2022.

Algorand smart contract security review was conducted based on the following items provided for

audit.

• PyTeal Code

o Private Repo

▪ https://github.com/Tapera-Finance/CodeAudit/tree/WholeAudit

Commit ID 07265bb545cc475ea29e485c2575e5ec220075f0

• Documents

o Algogard Whitepaper

▪ https://www.algogard.com/white-paper.pdf

Vantage Point performed this review by first understanding the high-level business logic of Gards

functionality and the interactions between different smart contracts within the provided

documentation. We sought clarifications on potential issues, discrepancies, and flaws throughout the

review with the Algogard team.

Throughout the smart contract audit, Vantage Point had active communication with the GARD team

and received timely and helpful support. Provided documentation had details of the business logic

and definitions of expected transaction groups for each user flows, making sure the code is well

documented and up-to-date.

An audit was conducted on the provided PyTeal code to identify any weaknesses, vulnerabilities, and

non-compliance to Algorand best practices. Test cases included in this review have been amended in

the appendix of this document for completeness.

The following noteworthy issues were identified during this review.

1. Incorrect Enforcement of Fees Paid to Treasury During Liquidation

2. Missing Algorand Standard Asset ID Checks during ASA Transfer

3. Incorrect Calculation Resulting in Zero Pay-out to Managers and Founders

The outcome of this Algorand Smart Contract Security Review engagement is provided as a detailed

technical report that provides the Smart Contract owners a full description of the vulnerabilities

identified, the associated risk rating for each vulnerability, and detailed recommendations that will

resolve the identified technical issue.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 4

VULNERABILITY OVERVIEW

Severity Count Open Closed

Critical 0 0 0

High 2 0 2

Medium 6 0 6

Low 3 3 0

Observational 3 2 1

Summary 14 5 9

Vulnerability Risk Score

All vulnerabilities found by Vantage Point will receive and individual risk rating based on the following

four categories.

CRITICAL COMPONENT RISK SCORE

Critical severity findings relate to an issue, which requires immediate attention and should be given

the highest priority by the business as it will critically impact business interest critically.

HIGH COMPONENT RISK SCORE

HIGH severity findings relate to an issue, which requires immediate attention and should be given the

highest priority by the business.

MEDIUM COMPONENT RISK SCORE

A MEDIUM severity finding relates to an issue, which has the potential to present a serious risk to the

business.

LOW COMPONENT RISK SCORE

LOW severity findings contradict security best practice and have minimal impact on the project or

business.

OBSERVATIONAL

Observational findings relate primarily to non-compliance issues, security best practices or are

considered an additional security feature that would increase the security stance of the environment

which could be considered in the future versions of smart contract.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 5

2. PROJECT DETAILS

SCOPE

Contact Name David McCabe

Application Name Algogard

Testing Period 3rd March 2022 – 23rd March 2022

GIT Commit ID 07265bb545cc475ea29e485c2575e5ec220075f0

Items Completed Vantage Point completed the agreed Security assessment for

below items.

• cdp_escrow.py

• price_validator.py

• reserve_logic.py

• Stake.py

• treasury.py

• utils.py

• Vote_fee.py

• Vote_lib.py

• Vote_manager.py

Component Review Type Status

Algorand Smart Contract Smart Contract Security Review Completed

Algorand Smart Contract
Smart Contract Security Review

Retest
Not Completed

VPQ-20220023:Algogard Smart Contract Audit – Public Report 6

VERSION HISTORY

Date Version Release Name

23rd March 2022 v0.1 Draft

24th March 2022 v0.2 QA Release

24th March 2022 V1.0 Final

29th March 2022 V1.1 Retest Updates

30th March 2022 V1.2 QA Release 2

VPQ-20220023:Algogard Smart Contract Audit – Public Report 7

3. RISK ASSESSMENT

This chapter contains an overview of the vulnerabilities discovered during the project. The

vulnerabilities are sorted based on the risk categories of CRITICAL, HIGH, MEDIUM and LOW.

The category OBSERVATIONAL refers to vulnerabilities that have no risk score and therefore

have no immediate impact on the system.

OVERVIEW OF COMPONENTS AND THEIR VULNERABILITIES

1. Algogard Smart Contract Audit HIGH RISK

1.1. Incorrect Enforcement of Fees Paid

to Treasury During Liquidation
Closed HIGH RISK

1.2. Incorrect Calculation Resulting in

Zero Pay-out to Managers and

Founders

Closed HIGH RISK

1.3. Erroneous Subroutine Stops

Liquidation from Execution After

46 Minutes

Closed MEDIUM RISK

1.4. Insecure Storage of Mnemonic

Seed Phrases
Closed MEDIUM RISK

1.5. Incorrect Application Logic Limits

Number of External Application

Opt-In

Closed MEDIUM RISK

1.6. Incorrect Assert Logic Closed MEDIUM RISK

1.7. Incorrect Value Set for Max Supply

of DAO Token
Closed MEDIUM RISK

1.8. Incorrectly Implemented For Loop

Operations
Closed MEDIUM RISK

1.9. Missing Algorand Standard Asset

ID Checks during ASA Transfer
Open LOW RISK

VPQ-20220023:Algogard Smart Contract Audit – Public Report 8

1.10. Insufficient On-Chain Validation

Against Altered Transactions
Open LOW RISK

1.11. Lack of Checks for Locking Vote

App
Open LOW RISK

1.12. Redundant Code Open OBSERVATIONAL

1.13. Price Oracle and DAO Manager Open OBSERVATIONAL

1.14. Incorrect Comments Closed OBSERVATIONAL

VPQ-20220023:Algogard Smart Contract Audit – Public Report 9

4. DETAILED DESCRIPTION OF

VULNERABILITIES

2. Algogard Smart Contract Audit HIGH RISK

1.1. Incorrect Enforcement of Fees Paid to Treasury During Liquidation

 HIGH RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

Incorrect logic or inconsistency in the calculation of values which are used in a Transfer or Asset

Transfer transaction may result in financial loss to the parties involved in the transaction. It is

important to ensure the calculation logic for such values are carried out in a correct and consistent

manner to ensure accurate and consistent values are referred when transactions are approved.

DESCRIPTION

Instance 1

Affected File

• priceValidator.py

o liquidate - Line 87-109

Based on the GARD Whitepaper page 8-9, during liquidation, remaining GARD balance after paying

the GARD_DEBT of the CDP escrow to the reserve, should be distributed between the CDP escrow's

original owner and the devfee address (Treasury).

After the GARD debt has been repaid to the reserve, 20% of the remainingGARD is
sent back to the reserve, while the rest of the collateral (80%) is returned to
the account that was liquidated (the CDP holder).

For example, if GARD left after paying the GARD_DEBT is 10 GARDs, this should be distributed per

below.

• 8.000000 GARD to CDP's original owner (80%)

• 2.000000 GARD to Treasury (20%)

However, the logic implemented enforces an incorrect amount for the fees paid to Treasury.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 10

As Gtxn[3].asset_amount which represents the devfee being paid only needs to be greater than or

equal to Gtxn[4].amount()/Int(5), for the same scenario where 10 GARDs needs to be distributed, it

would be distributed per below.

• 8.333333 GARD to CDP's original owner

• 1.666667 GARD to Treasury

In cases where the liquidator is the owner (self-liquidation) of the CDP contract account, the smart

contract incentivizes the liquidator to transfer less to the Treasury and more to the CDP owner.

RECOMMENDATION

Review the whitepaper and the code and check the correct amount to be enforced through Teal logic

validation so both the documentation and the code are in sync.

REGRESSION TESTING COMMENTS

26th March 2022 – This issue is closed.

Based on the commit abee2af8163c2e4be888c7cefc59e23cc368cb2c, incorrect logic for enforcing

amount of fee paid to Treasury during liquidation has been fixed.

price_validator.py – Line 109

Gtxn[3].asset_amount() == Gtxn[4].asset_amount()/Int(4),

VULNERABILITY REFERENCES

PyTeal Documentation – Arithmetic Operations

https://pyteal.readthedocs.io/en/latest/arithmetic_expression.html

VPQ-20220023:Algogard Smart Contract Audit – Public Report 11

1.2. Incorrect Calculation Resulting in Zero Payout to Managers and Founders

 HIGH RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

Incorrect logic or inconsistency in calculation of values which are used in Transfer or Asset Transfer

transactions may result in financial loss to the parties involved in the transaction. It is important to

ensure the calculation logic for such values are carried out in a correct and consistent manner to

ensure accurate and consistent values are referred when transactions are approved.

DESCRIPTION

Affected File/Code

• treasury.py

o payout - Line 68-105

The Algogard whitepaper page 8 states the following.

The Treasury pays 18% of its fee proceeds (in ALGO) to the DAO Manager account
each quarter. It also pays 2% of its fee proceeds to a founder account each
quarter.

In treasury.py, incorrect calculation logic for pay-out values for manager and founder were observed.

In line 77, the value of treasury balance was put into a global state ALGO_BALANCE. Afterwards, the

global state ALGO_BALANCE was used to deduct from the value of the treasury balance in line 78.

Assuming value of treasury balance is 1000 ALGO, the following calculation will take place: (1000 -

1000) * Manager's Percentage Cut / 100, which results in 0. As the same calculation logic was used

to calculate the founder's pay-out value, this would effectively impact both manager and founder as

they would receive 0 pay-outs every quarter.

RECOMMENDATION

Review the calculation logic to ensure that the arithmetic operation is implemented correctly as

intended, as well as how the parameters used in the calculation are being passed into the arithmetic

operation and how the result is being stored.

Following incorrect logic for global state modification can be removed.

App.globalPut(Bytes("ALGO_BALANCE"), Balance(Int(1))),

REGRESSION TESTING COMMENTS

28th March 2022 – This issue is closed.

Instance 1

VPQ-20220023:Algogard Smart Contract Audit – Public Report 12

Based on the commit 05faf8a4246e6be5e22557be87335886b2855dc, incorrect use of global state

“ALGO_BALANCE” has been remediated and the logic correctly calculates the pay-out amount for the

founder and the manager.

VULNERABILITY REFERENCES

PyTeal Documentation – Arithmetic Operations:

https://pyteal.readthedocs.io/en/latest/arithmetic_expression.html

VPQ-20220023:Algogard Smart Contract Audit – Public Report 13

1.3. Erroneous Subroutine Stops Liquidation From Execution After 46 Minutes

 MEDIUM RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

When a CDP's collateral value drops below 115% of the GARD minted, CDP is liquidated through a

Dutch auction where the price of the collateral in GARD drops from 115% of the GARDs minted to

100% in 6 minutes. However, due to lack of checks before triggering the subroutine auction_price(),

auction_price() is executed even after 6 minutes since the start of auction and eventually, after 2761

seconds from the start of auction, the auction_price() arrives at a negative value and returns an error.

As this subroutine is called regardless of the time difference between current block's timestamp and

the start of auction, once it has been 2761 seconds from the start of an auction for a CDP, all

liquidation will fail for the specific CDP.

DESCRIPTION

Instance 1

Affected Files

• price_validator.py

o liquidate - Line 87-109

o auction_price() - Line 21-33

It was noted that during liquidation, the smart contract logic makes use of subroutine auction_price()

to retrieve the dutch auction price of the CDP which linearly decreases from 115% of the collateral

value to 100%.

As below part of the logic is used to decrease the auction price, Subroutine auction_price() has

following trends.

(Global.latest_timestamp() - App.localGet(Txn.sender(),
Bytes("UNIX_START")))/Int(24))

1. Upon start of auction where (Global.latest_timestamp() - App.localGet(Txn.sender(),

Bytes("UNIX_START")) == 0

• 𝑎𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑟𝑖𝑐𝑒() = 1.15 ∗ 𝐺𝐴𝑅𝐷_𝐷𝐸𝐵𝑇

2. Within 360 seconds from the start of auction where 0 < (Global.latest_timestamp() -

App.localGet(Txn.sender(), Bytes("UNIX_START")) <=360

• 1.15 ∗ 𝐺𝐴𝑅𝐷_𝐷𝐸𝐵𝑇 > 𝑎𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑟𝑖𝑐𝑒() ≥ 1 ∗ 𝐺𝐴𝑅𝐷_𝐷𝐸𝐵𝑇

3. From 361 seconds to 2760 seconds from the start of the auction (In case the liquidation was not

successful) where 361<(Global.latest_timestamp()-App.localGet(Txn.sender(),Bytes("UNIX_START"))

<=2760

• 1 ∗ 𝐺𝐴𝑅𝐷_𝐷𝐸𝐵𝑇 > 𝑎𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑟𝑖𝑐𝑒() ≥ 0

VPQ-20220023:Algogard Smart Contract Audit – Public Report 14

4. After 2760 seconds from the start of the auction

• Returns error as 𝑎𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑟𝑖𝑐𝑒() becomes negative and only unsigned integer is allowed

Within the liquidate logic, subroutine auction_price() is always called even when it has been more than

6 minutes from the start of the auction.

price_validator.py - liquidate

Gtxn[2].asset_amount() + Gtxn[3].asset_amount() + Gtxn[4].asset_amount() >=
Max(App.localGet(Txn.sender(), Bytes("GARD_DEBT")), auction_price()),

Under following conditions, auction_price() subroutine would always fail and therefore, "liquidate"

transaction group would always be rejected.

• CDP's auction is started

• CDP's auction was not successful for more than 2760 seconds since the start of the auction

o Community participants, keepers and DAO Manager failed in successfully liquidating

the CDP for 46 minutes

Instance 2

Affected Files

• price_validator.py

o liquidate - Line 87-109

o auction_price() - Line 21-33

This instance has been self-reported and remediated by the Algogard team during regression testing.

It was noted that the subroutine auction_price() makes use of wrong denominator when calculating

the rate of deduction based on the number of seconds from UNIX_START. Below code snippet

calculates the equation for the auction price per equation below.

price_validator.py - auction_price

temp.store(temp.load()-(App.localGet(Txn.sender(),
Bytes("GARD_DEBT"))*(Global.latest_timestamp() - App.localGet(Txn.sender(),
Bytes("UNIX_START")))/Int(24)))

𝑡𝑒𝑚𝑝 = 𝐺𝐴𝑅𝐷𝐷𝐸𝐵𝑇 − 𝐺𝐴𝑅𝐷𝐷𝐸𝐵𝑇 ∗
∆𝑡

24

Where ∆𝑡 = 𝑡𝑙𝑎𝑡𝑒𝑠𝑡_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑡𝑎𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑟𝑡

Therefore, 1 second after the auction start, the logic would update the price to below.

𝑡𝑒𝑚𝑝 = 𝐺𝐴𝑅𝐷𝐷𝐸𝐵𝑇 − 𝐺𝐴𝑅𝐷𝐷𝐸𝐵𝑇 ∗
1

24
=

23

24
𝐺𝐴𝑅𝐷𝐷𝐸𝐵𝑇 ≈ 0.9583 𝐺𝐴𝑅𝐷𝐷𝐸𝐵𝑇

Instead of taking 6 minutes or 360 seconds to bring the price down from 1.15 GARD_DEBT (115%) to

1.00 GARD_DEBT (100%), it would drop the auction_price() by around 4.16% every second, which

drops the price to 100% 4 seconds after the auction start.

RECOMMENDATION

Instance 1

VPQ-20220023:Algogard Smart Contract Audit – Public Report 15

• Add checks within liquidate to make sure subroutine auction_price() is not triggered when

auction_price() is expected to return an error

• Add validations within subroutine auction_price() to handle scenarios which would trigger an

error based on current logic so that transaction group liquidate can still be approved

Instance 2

• As the deduction is in %, denominator of the logic for calculating the price deduction should

be further divided by 100

REGRESSION TESTING COMMENT

28th March 2022 – This issue is closed.

Instance 1 & 2

Based on commit IDs noted below, both issues highlighted under instance 1 and 2 have been

remediated to ensure correct decrement of auction_price() during auction and prevention of

erroneous subroutine calls after 2760 seconds.

• e877442d2937e9b00db341ffc22f52685597d110

• c05faf8a4246e6be5e22557be87335886b2855dc

VULNERABILITY REFERENCES

PyTeal Documentation – Arithmetic Operations:

https://pyteal.readthedocs.io/en/latest/arithmetic_expression.html

VPQ-20220023:Algogard Smart Contract Audit – Public Report 16

1.4. Insecure Storage of Mnemonic Seed Phrases

 MEDIUM RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

A mnemonic seed phrase is a series of words generated by cryptocurrency wallets that provide access

to the crypto associated with that wallet. During development of smart contracts, developers may

hard code such phrases in the code for ease of access and forget about removing them in post-

deployment of contracts. Due to the open-source nature of smart contracts, malicious actors may

easily gain hold of the phrases and obtain access to the wallets that the phrases are associated with,

and the impact would be potentially severe if the wallet contains funds in the MainNet as well.

DESCRIPTION

Instance 1 – Vote_manager.py – Line 14

Affected File/Code

• Vote_manager.py

o Line 14

It was noted that the affected file included mnemonic phrases as comments.

RECOMMENDATION

1. Create .gitignore file to specify files that should not be tracked and add .env file to the list.

2. Setup a .env file to store the mnemonic phrases.

3. Retrieve the phrases from .env to contract for testing purposes.

REGRESSION TESTING COMMENT

28th March 2022 – This issue is closed.

VULNERABILITY REFERENCES

Consensys – Prevent Making Your Secrets Public:

https://consensys.net/blog/developers/how-to-avoid-uploading-your-private-key-to-

github-approaches-to-prevent-making-your-secrets-public/

CWE:

https://cwe.mitre.org/data/definitions/922.html

OWASP:

https://www.owasp.org/index.php/Mobile_Top_10_2014-M2

https://cwe.mitre.org/data/definitions/922.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2

VPQ-20220023:Algogard Smart Contract Audit – Public Report 17

1.5. Incorrect Application Logic Limits Number of External Application Opt-In

 MEDIUM RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

Smart contracts use local states, global states and logic to ensure certain transactions can be limited

to a specific condition based on the applicable business logic. However, if the logic used to limit the

approval of limited transactions has flaws, unexpected transactions could be approved or cause a

stand-still to the smart contract’s functionality.

DESCRIPTION

Instance 1

Affected File

• price_validator.py

o app_check - Line 200-211

This issue was reported by the Algogard Dev Team during the review. Subsequent commit made was

reviewed by Vantage Point to validate if the commit made sufficiently addressed the identified issue.

It was noted that the application makes use of app_check to verify the transaction details of below

transaction group.

• Voting from CDP with Arbitrary Application Call (Limit opt-in up to 3 applications)

o Gtxn[0]

▪ Payment of "account_id" microAlgos

▪ From userAddress

▪ to userAddress

o Gtxn[1]

▪ Application Call

▪ From CDP

▪ AppID Arbitrary App ID other than Validator App ID

o Gtxn[2]

▪ Application Call

▪ From CDP

▪ AppID priceValidator

▪ App.Args[0]=="AppCheck"

VPQ-20220023:Algogard Smart Contract Audit – Public Report 18

The logic rejects the transaction group if the local state External_APPCOUNT is equal to or greater

than 3 with below line of code.

App.localGet(Txn.sender(), Bytes("EXTERNAL_APPCOUNT")) < ex_apps_limit,

For every successful application call, the value of local state External_APPCOUNT increases by 1 with

below code.

App.localPut(Txn.sender(), Bytes("EXTERNAL_APPCOUNT"), App.localGet(Txn.sender(),
Bytes("EXTERNAL_APPCOUNT")) + Int(1)),

However, even when the application call is intended to clear state or close out, the local state

EXTERNAL_APPCOUNT value increases regardless and therefore, do not allow further close out or

clear state application calls afterwards. This would mean that only 3 application calls can be made

from CDP to arbitrary app ID other than priceValidator contract, regardless of the Txn.on_completion()

value.

RECOMMENDATION

Instance 1

Implement a logic where the value of ex_apps_limit decreases when there are "clearing" application

calls such as OnComplete.CloseOut and OnComplete.ClearState.

REGRESSION TESTING COMMENT

15th March 2022 - This issue is closed.

Instance 1

Commit e4004e27c5e6566ef1ac3f62e56cb62af1925f5d was made to add a logic for increasing and

decreasing the value of ex_apps_limit local state depending on the application call type to prevent

lock-out and enforcing the limit in number of applications the cdp_escrow can opt-in to.

VULNERABILITY REFERENCES

Algorand Developer Portal – Application Call Transaction:

https://developer.algorand.org/docs/get-details/transactions/transactions/#application-

call-transaction

VPQ-20220023:Algogard Smart Contract Audit – Public Report 19

1.6. Incorrect Assert Logic

 MEDIUM RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

Smart contracts use assert checks to ensure transactions fulfil required conditions first before the

transactions can get approved. However, if the assert check used to validate transactions has flaws,

unexpected transactions could be approved or cause a stand-still to the smart contract functionality.

DESCRIPTION

Instance 1:

Affected File

• Stake.py

o unstake - Line 141-159

The incorrect assert logic at line 148 prevents users from unstaking an amount lower than their

current staked amount:

Stake.py – unstake – Line 148

current_stake(App.id(), sender) <= amount,

RECOMMENDATION

Instance 1

Change the comparison operator at Line 148 from ‘<=’ to ‘>=’ so users can unstake an amount lower

than their current total staked amount.

REGRESSION TESTING COMMENT

28th March 2022 – This issue is closed.

Based on the commit 061286798ff24ef39d39a628cc2a80233a3b21a6, incorrect assert logic for

unstake has been remediated.

VULNERABILITY REFERENCES

PyTeal Documentation – Checking Conditions Assert:

https://pyteal.readthedocs.io/en/stable/control_structures.html?#checking-conditions-

assert

VPQ-20220023:Algogard Smart Contract Audit – Public Report 20

1.7. Incorrect Value Set for Max Supply of DAO Token

 MEDIUM RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

During issuance of Algorand Standard Assets (ASAs), attributes such as total supply, decimals,

manager address, reserve address, freeze address and clawback address should be set according to

requirements.

DESCRIPTION

Affected File

• Vote_fee.py - Line 10

The Algogard whitepaper page 5 states the following.

GAIN has a fixed total supply of 2 billion tokens, out of which there are
currently 0 in circulation. 1.04B are slated for the public while the remaining
960M are to be used for private fundraising, hiring advisors, and compensating the
team.

It was observed in the following file that the value of total supply for GAIN was incorrectly set to 200

million instead of 2 billion tokens which was not in accordance with what was documented in the

whitepaper provided:

Vote_fee.py - Line 10

Constants
ASSET_TOTAL = Int(200000000)
VOTE_INTERVAL = Int(23)
VOTE_LENGTH = Int(24)
MIN_VAL = 0
MAX_VAL = 30
STARTING_RESULT = Int(20)

RECOMMENDATION

Use the E notation to specify numbers that are too large or small to be conveniently written in decimal

form to improve readability and reducing the possibility of human error.

Example:

initial_supply = Int(int(2e9))

REGRESSION TESTING COMMENT

28th March 2022

 – This issue is closed.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 21

Based on the commit ID 061286798ff24ef39d39a628cc2a80233a3b21a6, the value of ASSET_TOTAL

has been updated to 2 billion tokens with 6 decimals.

Vote_fee.py – Line 10

ASSET_TOTAL = Int(2000000000000000)

VULNERABILITY REFERENCES

Algorand Developer Portal – Algorand Standard Assets (ASAs)

https://developer.algorand.org/docs/get-details/asa/?from_query=ASA#immutable-asset-

parameters

VPQ-20220023:Algogard Smart Contract Audit – Public Report 22

1.8. Incorrectly Implemented For Loop Operations

 MEDIUM RISK

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

For-loops are used to perform iterative operations based on the termination condition. If the

conditions are set wrongly, incorrect loop operation could result in unexpected results.

DESCRIPTION

Instance 1

Affected File

• Stake.py

o check_all_votes – Line 20-32

It was noted that the for-loop implemented in subroutine check_all_votes had an incorrect

termination condition set, causing an extra loop to be executed.

Stake.py – check_all_votes

<REDACTED
For(i.store(Int(0)), i.load() <= current_votes, i.store(i.load() + Int(1))).Do(
<REDACTED>

In a scenario where App.globalGet(Bytes(“Num_votes”))=1, the actual number of loops executed

by the logic would be 2, as the termination condition is set to be i.load() <= current_votes

instead of i.load() < current_votes. The logic executes twice when i=0 and i=1 and exits before

the 3rd iteration.

Instance 2

Affected File

• Vote_fee.py

o close_vote – Line 132-139

It was noted that the smart contract logic implemented within the for loop unintentionally skips the

first index 0 and thus does not allow the choice with index 0 to be the “winner” when a vote closes.

Vote_fee.py – close_vote

<REDACTED>
For(i.store(Int(1)), i.load() <= max_val, i.store(i.load() + Int(1))).Do(
<REDACTED>

This could exclude vote option with index 0 from becoming the winner during close_vote operation.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 23

RECOMMENDATION

Use correct termination condition and start condition for iterative operations using for loop to ensure

unnecessary loops are not executed and thus return an unexpected value.

Instance 1

Update the termination condition of the for loop from <= to < per below example.

i.load() < current_votes

Instance 2

Update the start condition of the for loop from i.store(Int(1)) to i.store(Int(0)) per below example.

i.store(Int(0)), i.load()

REGRESSION TESTING COMMENT

29th March 2022 – This issue is closed.

Instance 1

Based on the commit c48ddf6811c7248192adb505fee7c8dae84ec37f, the termination condition of the

for loop has been remediated per recommendation.

Stake.py – Line 26

For(i.store(Int(0)), i.load() < current_votes, i.store(i.load() + Int(1))).Do(

Instance 2

Based on the commit c48ddf6811c7248192adb505fee7c8dae84ec37f, start condition of the affected

for loop has been remediated per recommendation.

Vote_fee.py – Line 132

For(i.store(Int(0)), i.load() <= max_val, i.store(i.load() + Int(1))).Do(

VULNERABILITY REFERENCES

PyTeal – For

https://pyteal.readthedocs.io/en/stable/api.html?highlight=for#pyteal.For

VPQ-20220023:Algogard Smart Contract Audit – Public Report 24

1.9. Missing Algorand Standard Asset ID Checks during ASA Transfer

 LOW RISK

VULNERABILITY TRACKING

STATUS: Open

BACKGROUND

In Algorand smart contracts, Algorand Standard Assets (ASA) can be transferred through asset transfer

transactions. During such transactions, it is necessary to validate the asset ID of the ASA being

transferred to ensure the correct type of ASA is being transferred.

DESCRIPTION

Instance 1 – Mint More GARD

Affected File/Code

• reserve_logic.py

o more_gard – Line 95-105

• price_validator.py

o more_gard – Line 191-213

It was noted that during the more_gard operation, the smart contract lacked checks to ensure ASA

being transferred is of a correct ASA ID, which should be equal to Int(stable_id).

The Gtxn[2] of the transaction group for more_gard operation is expected to be a transfer of GARD

ASA from the reserve address. However, no checks such as below was observed.

Gtxn[2].xfer_asset() == Int(stable_id)

However, based on the reserve_logic.py, there is no ASA other than GARD that the reserve can opt-

into through an ASA transfer of 0 amount. As such, the reserve is not expected to hold any other ASA

other than GARD and therefore the transaction is expected to fail. However, it is still recommended to

implement explicit checks against the ASA ID and not just rely on implied behaviour.

Instance 2 – Liquidate

Affected File/Code

• price_validator.py

o liquidate – Line 95-120

It was noted that during the liquidate operation, the smart contract lacked checks to ensure ASA

being transferred has asset ID equal to Int(stable_id).

The Gtxn[2], Gtxn[3] and Gtxn[4] of the transaction group for liquidate operation is expected to

include the following.

• Gtxn[2]

o From Liquidator

o To the reserve

VPQ-20220023:Algogard Smart Contract Audit – Public Report 25

o Asset Transfer GARD

• Gtxn[3]

o From Liquidator

o To the treasury

o Asset Transfer GARD

• Gtxn[4]

o From Liquidator

o To user address (CDP’s original owner)

o Asset Transfer GARD

The logic for validating the above transaction can be seen below but validation for ASA ID of

Gtxn[2],[3] and [4] were not observed.

Lack of ASA ID checks during asset transfer may allow incorrect ASA to be used as a “payment” to the

reserve, the treasury and CDP’s original owner.

Instance 3 – GARD to Algo

Affected File/Code

• Treasury.py

o GARD_TO_ALGO – Line 156-177

It was noted that during the GARD_TO_ALGO operation, the smart contract lacked checks to ensure

ASA being transferred has asset ID equal to Int(stable_id).

The Gtxn[0] and Gtxn[1] of the transaction group GARD_TO_ALGO is expected to include the

following.

• Gtxn[0]

o From manager

o Application Call to AppID Treasury

• Gtxn[1]

o From manager

o To Treasury

o Asset Transfer of GARD

The logic for validating ASA ID of Gtxn[1] was not observed.

Lack of ASA ID checks during asset transfer may allow incorrect ASAs other than GARD to be used to

exchange with Algo.

RECOMMENDATION

Review and enforce checks against the ASA ID of asset transfer transactions to ensure the correct ASA

is being transferred.

REGRESSION TESTING COMMENTS

29th March 2022 – This issue is kept open.

Based on the GARD team feedback on implicit checks (ASA Opt-in) and additional validations added,

the risk rating of this issue is updated to Low as it is still recommended to do explicit checks on ASA

ID during asset transfer transactions. It is noted that based on the current logic, reserve logic would

not have any ASA opt-in done other than GARD.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 26

Instance 1 - Mint More GARD

Following feedback was provided by the GARD team.

As the reserve is only opted into GARD for ASA, it would not be possible for the reserve to hold or

send any ASA other than GARD. It is also not possible to do an opt-in to ASA.

Instance 2 - Liquidate

Based on the commit c48ddf6811c7248192adb505fee7c8dae84ec37f, following additional checks

have been added for Gtxn[3] and Gtxn[4].

price_validator.py – Line 111-112

Gtxn[3].xfer_asset() == Int(stable_id),
Gtxn[4].xfer_asset() == Int(stable_id),

Following feedback was provided by the GARD team.

ASA ID check for Gtxn[2] was not implemented as this is a transfer to the reserve, which would only be

opted into the GARD ASA. As the reserve logic does not allow the reserve to opt-in to any other ASA

other than GARD, any ASA transfer to reserve other than GARD would fail.

Instance 3 - GARD to Algo

Based on the commit c48ddf6811c7248192adb505fee7c8dae84ec37f, following additional check has

been added for Gtxn[1].

Treasury.py – Line 161

Gtxn[1].xfer_asset() == stable_id,

VULNERABILITY REFERENCES

PyTeal Documentation – Algorand Standard Assets

https://developer.algorand.org/docs/get-details/asa/

VPQ-20220023:Algogard Smart Contract Audit – Public Report 27

1.10. Insufficient On-Chain Validation Against Altered Transactions

 LOW RISK

VULNERABILITY TRACKING

STATUS: Open

BACKGROUND

Smart contracts often make use of front-end web applications to cater for wider pool of users through

easy-to-use GUI-based interactions. However, as these front-end web applications are used to craft

transaction groups based on user's input, if compromised, a maliciously altered version of transaction

groups could be forwarded to or initiated by the actual user of Gard. Although the responsibility lies

with the user to review the details of the transaction groups, it is recommended to have validations

within the smart contract to protect the users against potentially damaging transaction groups,

including the Algorand guidelines published.

DESCRIPTION

As the smart contract does not validate transaction fields such as sender, receiver, group_size,

group_index, close_remainder_to, asset_close_to and rekeyTo of affected transactions, if the front-end

web applications which exist to aid user interaction has been compromised, altered transactions which

could be damaging to the users could be forwarded to the user for approval. If not reviewed

thoroughly, such transaction groups damaging to the user could be approved. Although, the

responsibility lies with the user who is approving the transaction group to review each transaction

within the atomic group, it is still recommended to have on-chain validations as a safeguard. Do note

that this issue only highlights scenarios where users could approve transaction groups which could be

damaging to themselves.

Instance 1 - Closing CDP without Paying Devfee

Affected File

• cdp_escrow.py

o RedeemStableNoFee - Line 95-103

• price_validtor.py

o close_no_fee - Line 134-149

Affected transactions are noted below.

• Closing CDP without Paying Devfee

o Gtxn[1]

▪ rekey_to()

▪ asset_close_to

o Gtxn[3]

▪ close_remainder_to()

VPQ-20220023:Algogard Smart Contract Audit – Public Report 28

▪ receiver()

For example, when the 'Closing CDP without Paying Devfee' transaction group is submitted, the user

transfers the GARD debt to the GARD Reserve and is expected to receive the collateral back from the

CDP contract account. However, due to lack of validation for the Gtxn[3].receiver() value, the collateral

could be transferred to an arbitrary address other than the user address. Furthermore, the logic only

checks if the Gtxn[3].close_remainder_to() is equal to a value other than Global.zero_address() which

includes any arbitrary address that is valid. It is acceptable to omit checks on the "amount" as long as

both receiver() and close_remainder_to() are set to userAddress.

Similar issues observed are highlighted as separate instances below.

Instance 2 - Open New Position Group A & B

Affected File

• price_validtor.py

• cdp_escrow.py

Current instance affects transaction groups noted below.

• Opening New Position A

o Gtxn[0]

▪ rekey_to()

▪ close_remainder_to()

▪ amount()

▪ receiver()

▪ group_size()

▪ group_index()

o Gtxn[1]

▪ Global.group_size()

▪ group_index()

o Gtxn[2]

▪ receiver()

▪ rekey_to()

▪ asset_close_to()

▪ amount()

▪ xfer_asset()

▪ transaction_type

▪ sender()

▪ Global.group_size()

▪ group_index()

VPQ-20220023:Algogard Smart Contract Audit – Public Report 29

• Opening New Position B

o Gtxn[0]

▪ Txn.group_index

o Gtxn[1]

▪ group_size()

▪ group_index()

▪ rekey_to()

▪ close_remainder_to()

o Gtxn[2]

▪ Global.group_size()

▪ group_index()

▪ close_remainder_to()

▪ rekey_to()

o Gtxn[3]

▪ receiver()

▪ group_index()

Instance 3 - Voting from CDP & Key Registration

Affected File

• cdp_escrow.py

o Vote - Line 27-51

• price_validtor.py

o app_check - Line 200-209

Current instance affects transaction groups noted below.

• Voting from CDP

o Gtxn[0]

▪ receiver()

▪ rekey_to()

▪ close_remainder_to()

▪ group_index()

o Gtxn[1]

▪ group_index()

• Voting from CDP with Arbitrary AppCall

o Gtxn[0]

VPQ-20220023:Algogard Smart Contract Audit – Public Report 30

▪ rekey_to()

▪ close_remainder_to()

▪ group_index()

o Gtxn[1]

▪ group_index()

o Gtxn[2]

▪ group_index()

• Key Registration

o Gtxn[0]

▪ rekey_to()

▪ close_remainder_to()

▪ group_index()

▪ receiver()

Instance 4 - Change Pricing data

Affected File

• price_validator.py

o change_price - Line 213-223

Current instance affects transaction groups noted below.

• Change Pricing Data

o Txn

▪ group_size()

Instance 5 - Add Voting App

Affected File

• Stake.py

o add_vote_app - Line 82-92

Current instance affects transaction groups noted below.

• Add Voting App

o Txn

▪ rekey_to()

▪ group_size()

Instance 6 - Remove Voting App

Affected File

• Stake.py

VPQ-20220023:Algogard Smart Contract Audit – Public Report 31

o remove_vote_app - Line 94-107

Current instance affects transaction groups noted below.

• Remove Voting App

o Txn

▪ rekey_to()

▪ group_size()

Instance 7 - Lock Voting App

Affected File

• Stake.py

o lock_vote_app - Line 109-117

Current instance affects transaction groups noted below.

• Lock Voting App

o Txn

▪ rekey_to()

▪ group_size()

Instance 8 - Stake GAIN Token

Affected File

• Stake.py

o stake - Line 123-138

Current instance affects transaction groups noted below.

• Stake

o Gtxn[0]

▪ rekey_to()

▪ asset_close_to()

o Gtxn[1]

▪ group_index()

Instance 9 - Unstake GAIN Token

Affected File

• Stake.py

o unstake - Line 141-159

Current instance affects transaction groups noted below.

• Unstake

o Txn

VPQ-20220023:Algogard Smart Contract Audit – Public Report 32

▪ rekey_to()

▪ group_size()

Instance 9 - Swap Algo for GARD

Affected File

• treasury.py

o ALGO_TO_GARD - Line 132-155

Current instance affects transaction groups noted below.

• Unstake

o Gtxn[0]

▪ rekey_to()

▪ group_index()

o Gtxn[1]

▪ rekey_to()

▪ group_index()

▪ close_remainder_to()

Instance 10 - Swap GARD for Algo

Affected File

• treasury.py

o GARD_TO_ALGO - Line 157-178

Current instance affects transaction groups noted below.

• Swap GARD for Algo

o Gtxn[0]

▪ rekey_to()

▪ group_index()

o Gtxn[1]

▪ rekey_to()

▪ group_index()

▪ asset_close_to()

Instance 11 - Swap GAIN for Algo

Affected File

• treasury.py

o claim - Line 108-130

Current instance affects transaction groups noted below.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 33

• Swap GARD for Algo

o Gtxn[0]

▪ rekey_to()

▪ group_index()

o Gtxn[1]

▪ rekey_to()

▪ group_index()

▪ asset_close_to()

Instance 12 - Vote

Affected File

• Vote_manager.py

o send_vote- Line 86-107

Current instance affects transaction groups noted below.

• Vote

o Txn

▪ rekey_to()

▪ group_size()

Instance 13 - Cancel

Affected File

• Vote_manager.py

o cancel_vote- Line 110-117

Current instance affects transaction groups noted below.

• Cancel

o Txn

▪ rekey_to()

▪ group_size()

Instance 14 - Init

Affected File

• Vote_manager.py

o init_vote - Line 123-132

Current instance affects transaction groups noted below.

• Init

o Txn

VPQ-20220023:Algogard Smart Contract Audit – Public Report 34

▪ rekey_to()

▪ group_size()

Instance 15 - Close

Affected File

• Vote_manager.py

o close_vote - Line 135-142

Current instance affects transaction groups noted below.

• Close

o Txn

▪ rekey_to()

▪ group_size()

Instance 16 - Minting More GARD from CDP Collateral

Affected File

• price_validator.py

• cdp_escrow.py

• treasury.py

• reserve_logic.py

Current instance affects transaction groups noted below.

• Minting More GARD from CDP Collateral

o Gtxn[1]

▪ rekey_to()

▪ amount()

o Gtxn[2]

▪ receiver()

Instance 17 - Starting an Auction of the Collateral for GARD

Affected File

• price_validator.py

• cdp_escrow.py

• treasury.py

Current instance affects transaction groups noted below.

• Starting an Auction of the Collateral for GARD

o Gtxn[0]

▪ group_size()

VPQ-20220023:Algogard Smart Contract Audit – Public Report 35

Instance 18 - Liquidating a CDP

Affected File

• price_validator.py

• cdp_escrow.py

• treasury.py

• reserve_logic.py

Current instance affects transaction groups noted below.

• Liquidating a CDP

o Gtxn[1]

▪ receiver()

▪ amount()

▪ close_remainder_to()

▪ should be set to Liquidator's address

o Gtxn[2]

▪ rekey_to()

▪ asset_close_to()

▪ group_size()

▪ group_index()

o Gtxn[3]

▪ asset_amount()

▪ The logic allows this value to be around 16.7% instead of the 20% of

the remaining GARD after payment of GARD_DEBT to the reserve

▪ rekey_to()

▪ asset_close_to()

▪ group_index()

▪ group_size()

o Gtxn[4]

▪ asset_amount()

▪ The logic allows this value to be around 83.3% instead of the 80% of

the remaining GARD after payment of GARD_DEBT to the reserve. This

allows liquidators who are liquidating their own CDP to pay less to the

reserve and return more to their own account. This issue has been

highlighted separately

▪ rekey_to()

▪ asset_close_to()

VPQ-20220023:Algogard Smart Contract Audit – Public Report 36

▪ group_size()

▪ group_index()

As Gtxn[1].receiver() and Gtxn[1].amount() do not have any validation and

Gtxn[1].close_remainder_to() is only checked against a value other than Global.zero_address, it is

possible for the insufficiently verified fields to be set to an address other than the address of the

liquidator, who rightfully should claim the total algo balance of the CDP being liquidated.

Instance 19 - Closing a CDP and Paying a Devfee

Affected File

• price_validator.py

• cdp_escrow.py

• treasury.py

• reserve_logic.py

Current instance affects transaction groups noted below.

• Closing a CDP and Paying a Devfee

o Gtxn[0]

▪ group_index()

o Gtxn[1]

▪ rekey_to()

▪ asset_close_to()

▪ group_index()

▪ group_size()

o Gtxn[2]

▪ group_index()

o Gtxn[3]

▪ group_index()

▪ receiver()

▪ closeRemainderTo

▪ Validation only checks if it is not equal to the Global.zero_address and

it can be set to any valid address, other than the owner of the CDP

who is the rightful recipient of the Algos held by CDP as collateral

Instance 20 - Clearing Apps Opted into From CDP Besides the Validator to Prepare for

Liquidation

Affected File

• price_validator.py

• cdp_escrow.py

VPQ-20220023:Algogard Smart Contract Audit – Public Report 37

Current instance affects transaction groups noted below.

• Clearing Apps Opted Into From CDP Besides the Validator to Prepare for Liquidation

o Gtxn[0]

o Gtxn[1]

o Gtxn[2] - There is no logic shared for this transaction as this is an "Arbitrary

transaction from Liquidator, only checks done are to make sure this isn't from the

CDP being "cleared"

▪ group_index()

▪ group_size()

▪ rekey_to()

▪ type()

Instance 21 – Treasury – Pay Out

Affected File

• Treasury.py - Payout Line 68-104

• Txn

o rekey_to()

RECOMMENDATION

Appropriate transaction field validations can be added based on the context. Sample validations are

noted below.

Txn.close_remainder_to() == user_address,
Txn.receiver() == user_address,
Txn.close_remainder_to()==Globla.zero_address()
Txn.rekey_to()==Global.zero_address()
Txn.asset_close_to()==Global.zero_address()
Txn.group_index()==Int(1)
Global.group_size()==Int(2)

REGRESSION TESTING COMMENT

Regression testing for this item has not yet been performed.

VULNERABILITY REFERENCES

Algorand Developer Portal – Guidelines

https://developer.algorand.org/docs/get-details/dapps/avm/teal/guidelines/

VPQ-20220023:Algogard Smart Contract Audit – Public Report 38

1.11. Lack of Checks for Locking Vote App

 LOW RISK

VULNERABILITY TRACKING

STATUS: Open

BACKGROUND

Operations with condition requirements on local and global state of the smart contract should enforce

checks before committing state changes to the contracts on blockchain to ensure unexpected

outcome of such operations do not affect the smart contract’s operations.

DESCRIPTION

Instance 1 – lock_vote_app

Affected File/Code

• Stake.py

o lock_vote_app – Line 109-117

It was noted that during the lock_vote_app operation, the smart contract lacked checks to ensure it

does not lock vote apps which has not even been added through add_vote_app. As observed in the

lock_vote_app logic, only validation enforced is Assert(isManager). It was also noted that the

affected operation can only be done by the DAO Manager.

RECOMMENDATION

Review and enforce checks such as below before increasing the index of Locked_votes.

Example

App.globalGet(Bytes(“Num_votes”)) > App.globalGet(Bytes("Locked_votes"))

REGRESSION TESTING COMMENTS

Regression testing for this item has not yet been performed.

VULNERABILITY REFERENCES

PyTeal Documentation – Assert

https://pyteal.readthedocs.io/en/stable/api.html?highlight=assert#pyteal.Assert.__init__

VPQ-20220023:Algogard Smart Contract Audit – Public Report 39

1.12. Redundant Code

OBSERVATIONAL

VULNERABILITY TRACKING

STATUS: Open

BACKGROUND

Use of redundant code in Algorand smart contracts may affect code readability, TEAL opcode

computational cost and size limit. Algorand smart contracts are subjected to compilation size and

opcode cost limitations such as below.

Smart Signatures

• 1000 bytes in size

• 20,000 in opcode cost

Smart Contracts

• 2KB Total for the compiled approval and clear program

• Size can be increased in 2KB increments, up to an 8KB for both approval and clear program

• 700 for single transactions, for group transactions, opcode cost is pooled

DESCRIPTION

Instance 1:

Affected File

• Vote_manager.py

o valid_vote_check - Line 83-85

Based on the design decision taken, the following subroutine found in Vote_manager.py at 83-85 can

be removed as it always returns True.

Vote_manager.py – Line 83-85

@Subroutine(TealType.uint64)
 def valid_vote_check(vote: TealType.bytes):
 # Any vote is valid, users should be careful when sending a vote
 return Int(1)

Instance 2:

Affected File

• treasury.py

o valid_vote_check - Line 83-85

Following duplicate code was observed.

treasury.py – Line 22 & 29

 manager_account = global_must_get(Bytes("Manager"), Int(2))
 # This account will change, the percentage might change

VPQ-20220023:Algogard Smart Contract Audit – Public Report 40

<REDACTED>
 founder_percent = Int(2)
 # This account will change, the percentage might change
 manager_account = global_must_get(Bytes("Manager"), Int(2))

RECOMMENDATION

Review the purpose of redundant code and remove them if not necessary.

REGRESSION TESTING COMMENT

Regression testing for this item has not yet been performed.

VULNERABILITY REFERENCES

CWE:

https://cwe.mitre.org/data/definitions/1041.html

https://cwe.mitre.org/data/definitions/1041.html

VPQ-20220023:Algogard Smart Contract Audit – Public Report 41

1.13. Price Oracle and DAO Manager

OBSERVATIONAL

VULNERABILITY TRACKING

STATUS: Open

BACKGROUND

Since GARD is an algorithmic stable coin which could be considered as overcollateralized loans with

Loan-to-Value(LTV) at ~71% and liquidation at collateralization below 115% where a stable Algorand

Standard Asset GARD can be loaned or minted, the accuracy and availability of price oracle is critical

to its ecosystem for upholding its value and price peg. For robustness, accuracy, and impartiality, it is

recommended to use decentralized and independent oracles.

DESCRIPTION

It was noted that GARD makes use of price oracles for various purposes, including liquidation and

minting. Since GARD is pegged to USD based on the liquidation mechanism of an overcollateralized

loan/minting, accuracy of the ALGO/USD price is crucial to all participants of GARD.

During the review, it was noted that Algoracle price feed for Algo/USD (App ID # : 53083112) was

used, which is currently only available in testnet and not mainnet. In addition, DAO manager is able to

change the PRICING_APP_ID of the priceValidator contract after launch.

We noted following risks.

1. Inaccuracy, bias and low availability of the price oracle used for Algo/USD pair may allow

unintended liquidations or other consequences based incorrect Algo/USD price available on-

chain.

2. DAO Manager changing the PRICING_APP_ID to a biased, inaccurate, or malicious price

oracle with either malicious intent or by human error.

3. Although first DAO Manager is set to a specific address during deployment, for subsequently

voted DAO managers, there is no on-chain method available to ensure it is a multisignature

account and such privileged role carries a high risk if it is assigned to a single signature

account.

RECOMMENDATION

1. Once decentralized price oracle is available, switch to the accurate and impartial price oracle

with high availability

2. Ensure first DAO Manager uses multi-sig for risk management

3. For subsequently voted DAO Managers, sufficient information should be provided to those

voting to highlight the bigger risk carried by DAO manager candidates with single signature

account compared to DAO manager candidates with multisignature accounts.

REGRESSION TESTING COMMENT

23rd March 2022 – This issue is kept open

Based on discussion with Algogard team, following updates were noted.

VPQ-20220023:Algogard Smart Contract Audit – Public Report 42

1. For the GARD launched on testnet provided for testing, Algoracle price feed for Algo/USD

(App ID # : 53083112) was used.

2. Currently, there is no Algo/USD price oracle available in Algorand mainnet.

3. Upon launch of Algogard, a smart contract will be created to provide the Algo/USD price on-

chain.

4. Price feed provided in the interim price feed oracle would be from different trusted sources

with safeguards against unexpected errors or unavailability.

5. Once a decentralized price oracle which meets standards in terms of accuracy, availability and

impartiality becomes available, the DAO manager can update the PRICING_APP_ID state

within priceValidator.py via application call Txn.application_args[0] ==
Bytes("ChangePricing").

6. Number of “change_price” that can be done would also be increased to 4 in the future.

7. Privileges given to the DAO Manager relies on the consensus and a belief that stakeholders of

GAIN would vote for the DAO Manager who would be also incentivized for the success of

GARD and it is an inherent design decision made with risks known.

VULNERABILITY REFERENCES

CWE:

https://cwe.mitre.org/data/definitions/1041.html

https://cwe.mitre.org/data/definitions/1041.html

VPQ-20220023:Algogard Smart Contract Audit – Public Report 43

1.14. Incorrect Comments

OBSERVATIONAL

VULNERABILITY TRACKING

STATUS: Closed

BACKGROUND

Comments in the code should provide accurate references to the reader and be in sync with the most

updated business logic and specifications to avoid confusion.

DESCRIPTION

Instance 1

Affected File

• price_validator.py

o Line 19-20

▪ Price decrease from 115% to 100% instead of 105%

o Line 75-76

▪ Instead of 125% (5/4), it should be 115% (23/20)

o Line 164-165

▪ Instead of 150% (3/2), it should be 140% (7/5)

o Line 192-197

▪ Instead of 150% (3/2), it should be 140% (7/5)

price_validator.py

Line 19
Decreases price linearly from 115% to 105% over 6 minutes
<REDACTED>
Line 75
5/4 x GARD > collateral x (USD/mAlgo)
<REDACTED>
Line 164
3/2 x GARD <= collateral x (USD/mAlgo)
<REDACTED>
Line 192
3/2 x GARD <= collateral x (USD/mAlgo)
<REDACTED>

RECOMMENDATION

Update incorrect comments so that accurate information can be referenced to the reader of the code.

REGRESSION TESTING COMMENT

28th March 2022 – This issue is closed.

Instance 1

VPQ-20220023:Algogard Smart Contract Audit – Public Report 44

Based on the commit abee2af8163c2e4be888c7cefc59e23cc368cb2c, incorrect comments have been

updated with accurate information.

Price_validator.py – Line 19-20, 83-84, 172, 200

Gets current price of collateral in the auction
Decreases price linearly from 115% to 100% over 6 minutes
<REDACTED Line 21-82>
23/20 x GARD > collateral x (USD/mAlgo)
<REDACTED Line 85-171>
7/5 x GARD <= collateral x (USD/mAlgo)
<REDACTED Line 173-199>
7/5 x GARD <= collateral x (USD/mAlgo)

VULNERABILITY REFERENCES

CWE:

https://cwe.mitre.org/data/definitions/1041.html

https://cwe.mitre.org/data/definitions/1041.html

VPQ-20220023:Algogard Smart Contract Audit – Public Report 45

5. APPENDIX

DISCLAIMER

The material contained in this document is confidential and only for use by the company receiving this

information from Vantage Point Security Pte. Ltd. (Vantage Point). The material will be held in the

strictest confidence by the recipients and will not be used, in whole or in part, for any purpose other

than the purpose for which it is provided without prior written consent by Vantage Point. The recipient

assumes responsibility for further distribution of this document. In no event shall Vantage Point be

liable to anyone for direct, special, incidental, collateral or consequential damages arising out of the

use of this material, to the maximum extent permitted under law.

The security testing team made every effort to cover the systems in the test scope as effectively and

completely as possible given the time budget available. There is however no guarantee that all

existing vulnerabilities have been discovered due to the nature of manual code review. Furthermore,

the security assessment applies to a snapshot of the current state at the examination time.

SCOPE OF AUDIT

Vantage Point reviewed the smart contracts underlying codebase to identify any security or economic

flaws, or non-compliance to Algorand best practices. The scope of this review included the following

test-cases and audit points.

• Insufficient Sender Address Validation

for Privileged Operations

• Lack of Validation for Validity of

Referenced States from External

Applications

• Insufficient Validation of Transaction

Fields and Types

• Validation of RekeyTo address for

non-rekeying transactions

• Validation of CloseRemainderTo and

AssetCloseTo for non-closing

transactions

• Validation of Asset Identifier for Asset

Transfer Transactions

• Validation of GroupIndex and

GroupSize for Transaction Groups

• Incorrect Order of Operations

• Smart Contract Versions

• Incorrect Use of ScratchVar, Local and

Global States

• Flawed/Inaccurate

Logical/Mathematical Operations

• Overflow or Underflow Possibilities

based on Valid Argument Ranges

• Validation of user-supplied

Application Arguments

• Use of Multisignatures for Privileged

Accounts

• Other known Algorand Best Practices

and Guideline

