
Smart Contract Audit

GARD

Smart Contract Audit
V220325 Prepared for GARD • March 2022

TablE oF cOnTEntS

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

GARD-1 Contracts can be deleted or updated

GARD-2 Faulty auction_price function

GARD-3 Attackers can bypass reserve validations

GARD-4 Liquidated user loses all collateral

GARD-5 has_voted is always true for Vote_id 0

5. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In March 2022, GARD engaged Coinspect to perform a source code review of
GARD. The objective of the project was to evaluate the security of the smart
contracts.

Coinspect finds the protocol design concerning due to relying on off-chain
mechanisms to ensure consistency on the voting mechanism. Besides this, no major
issues were identified regarding design.

The following issues were identified during the assessment:

High Risk Medium Risk Low Risk

4 0 0
Fixed

4
Fixed

0
Fixed

0

© 2022 Coinspect 2

https://coinspect.com

2. Assessment and Scope
The audit started on March 11, 2022 and was conducted on the main branch of the
git repository at https://github.com/Tapera-Finance/CodeAudit as of commit
c67130a2e8fa8802c9b013d010bfddc2f7d2792e.

f1f84e2920d410473b0bf36f018da31896ca5f20eea432748439810469c9b212 cdp_escrow.py
0e5d67c0e6d3420e9c442ae8394518c3cd3ebb1dd18ccfec92dbaba72860dc35 price_validator.py
8064f02c4684ef6835db12c90302bec4042c55c5fe532047647816fa3eaff41f reserve_logic.py
c9881b55a97a1b451c496e65fe3a999694cd5ff306fbcb4f4d415be135f6173d Stake.py
d4eda173d165f2fac42fc268a20f11851a898f90919dc49f7cd3775294359256 treasury.py
3bf90bd839873f546dbdbb6fe7c1f0d5f4e84cb7827ae25b9ca9bd1e9c439269 utils.py
d886b68fe15e341827f1b1f4d05613e68ef2d62cf58ae5aacc706467ae58d6d0 Vote_fee.py
931121df64c071b76eb3c3fb212bf2e2ff091daf3519ec1853e367a18df9899e Vote_lib.py
594671f45cd601ebf32a1deddd259ea39697d2bebf3e3c4b64d493acd1c884a0 Vote_manager.py

The GARD protocol implements an algorithmic stablecoin on the Algorand
blockchain. Similarly to other algorithmic stablecoin systems, it works by
distributing new assets against users' ALGOs as collateral. In addition, users can
still use their ALGOs to participate in Algorand Governance. It also implements a
decentralized voting system to appoint a manager and modify the opening and
closing fees.

The documentation and tests provided by the GARD team were minimal.

Four high impact issues were found in the protocol implementation. GARD-1 allows
attackers to delete or update three of the main smart contracts. GARD-2 arises
due to an error in the auction price function, and GARD-4 allows malicious
liquidators to avoid paying liquidated users the auction price by sending it instead to
the fee address. GARD-3 allows attackers to bypass the reserve validations by
providing a malicious token, resulting in the loss of the security assumptions made
by the price validator.

© 2022 Coinspect 3

https://github.com/Tapera-Finance/CodeAudit

3. Summary of Findings

Id Title Total Risk Fixed

GARD-1 Contracts can be deleted or updated High ✔

GARD-2 Faulty auction_price function High ✔

GARD-3 Attackers can bypass reserve validations High ✔

GARD-4 Liquidated user loses all collateral High ✔

GARD-5 has_voted is always true for Vote_id 0 Info Fixed

© 2022 Coinspect 4

4. Detailed Findings

GARD-1 Contracts can be deleted or updated

Total Risk

High

Impact
High

Location
Vote_fee.py
Vote_manager.py
Stake.py

Fixed
✔

Likelihood
High

Description

Several contracts fail to correctly validate DeleteApplication or UpdateApplication
calls, allowing attackers to delete them, or update the code.

#Stake.py
program = Cond(

[Txn.application_id() == Int(0), Approve()],
[Txn.on_completion() == OnComplete.CloseOut, close_out(sender, asset_id)],
[Txn.application_args[0] == Bytes("Add_vote"), add_vote_app],
[Txn.application_args[0] == Bytes("Remove_vote"), remove_vote_app],
[Txn.application_args[0] == Bytes("Lock_vote"), lock_vote_app],
[Txn.application_args[0] == Bytes("Stake"), stake],
[Txn.application_args[0] == Bytes("Unstake"), unstake],
[Txn.application_args[0] == Bytes("Activate"), activate],
[Txn.on_completion() == OnComplete.OptIn, Approve()],
[Txn.on_completion() == OnComplete.DeleteApplication, Reject()],
[Txn.on_completion() == OnComplete.UpdateApplication, Reject()],

)

#Vote_fee.py
program = Cond(

[Txn.application_id() == Int(0), on_creation],
[Txn.on_completion() == OnComplete.CloseOut, on_closeout],
[Txn.application_args[0] == Bytes("Vote"), send_vote],
[Txn.application_args[0] == Bytes("Cancel"), cancel_vote],
[Txn.application_args[0] == Bytes("Init"), init_vote],
[Txn.application_args[0] == Bytes("Close"), close_vote],
[Txn.on_completion() == OnComplete.OptIn, Approve()],
[Txn.on_completion() == OnComplete.DeleteApplication, Reject()],
[Txn.on_completion() == OnComplete.UpdateApplication, Reject()],

)

#Vote_manager.py
program = Cond(

[Txn.application_id() == Int(0), on_creation],

© 2022 Coinspect 5

[Txn.on_completion() == OnComplete.CloseOut, on_closeout],
[Txn.application_args[0] == Bytes("Vote"), send_vote],
[Txn.application_args[0] == Bytes("Cancel"), cancel_vote],
[Txn.application_args[0] == Bytes("Init"), init_vote],
[Txn.application_args[0] == Bytes("Close"), close_vote],
[Txn.on_completion() == OnComplete.OptIn, Approve()],
[Txn.on_completion() == OnComplete.DeleteApplication, Reject()],
[Txn.on_completion() == OnComplete.UpdateApplication, Reject()],

)

The rejection of the DeleteApplication and UpdateApplication calls happen after
all the other conditions are evaluated. This allows the attackers to perform those
actions in any of the previous functions.

Recommendation

Reject invalid transactions first and then execute methods, or check for the correct
OnComplete operation code.

Status

Followed recommendation.

© 2022 Coinspect 6

GARD-2 Faulty auction_price function

Total Risk

High

Impact
High

Location
price_validator.py

Fixed
✔

Likelihood
High

Description

The auction_price function does not correctly compute the auction price for the
liquidated ALGOs.

Gets current price of collateral in the auction
Decreases price linearly from 115% to 105% over 6 minutes
@Subroutine(TealType.uint64)
def auction_price():
temp = ScratchVar(TealType.uint64)
main = Seq(
temp.store(App.localGet(Txn.sender(), Bytes("GARD_DEBT"))*Int(23)/Int(20)),
If(Global.latest_timestamp() > App.localGet(Txn.sender(),
Bytes("UNIX_START"))).Then(
Seq(
temp.store(temp.load()-(App.localGet(Txn.sender(),
Bytes("GARD_DEBT"))*(Global.latest_timestamp() -
App.localGet(Txn.sender(), Bytes("UNIX_START")))/Int(24))

)
)

)
)
return Seq(main, Return(temp.load()))

The function computes DEBT*1.15 - DEBT*Δt/24. Replacing delta with 360 (6
minutes) and an arbitrary DEBT, we have: 50*1.15 - 50*360/24 = -692.5.

Recommendation

Replace the subtraction second term dividend (24) with 3600.

Status

The function was changed to decrease the price linearly from 115% to 100%.

© 2022 Coinspect 7

GARD-3 Attackers can bypass reserve validations

Total Risk

High

Impact
High

Location
price_validators.py

Fixed
✔

Likelihood
High

Description

Attackers can use crafted assets to bypass core validations and assumptions. These
checks are critical for the safety of the protocol and can lead to funds stolen.

The price validator assumes the asset id passed in the Foreign Assets array
corresponds to the stablecoin id. This is not a safe assumption since it can be
manipulated by the users.

For instance, in new_position:
application args["NewPosition", Int(unix_start)]
(asset array args[stable_id, account_id])
new_position = And(

Txn.applications[1] == price_app_id,
Txn.applications[2] == open_app_id,
Txn.rekey_to() == Global.zero_address(),
Global.latest_timestamp() <= Btoi(Gtxn[0].application_args[1])

+ Int(30),
Global.latest_timestamp() >= Btoi(Gtxn[0].application_args[1])

- Int(30),
Gtxn[3].asset_amount() <= Int(600000000000000000),
Gtxn[3].asset_amount() >= Int(1000000),
Gtxn[2].amount()

>= Btoi(BytesDiv(BytesMul(Itob(Gtxn[3].asset_amount()
* open_fee), Itob(Int(10) ** decimals)), Itob(Int(1000)
* price))),

Gtxn[3].asset_amount() * Int(7) / Int(5)
<= Btoi(BytesDiv(BytesMul(Itob(Gtxn[1].amount()), Itob(price)),

Itob(Int(10) ** decimals))),
Seq(

Assert(App.localGet(Int(1), Bytes('GARD_DEBT')) == Int(0)),
Assert(get_reserve() == Gtxn[3].sender()),
App.localPut(Int(1), Bytes('GARD_DEBT'),

Gtxn[3].asset_amount()),
App.localPut(Int(1), Bytes('UNIX_START'),

Btoi(Gtxn[0].application_args[1]) / Int(2)
* Int(2)),

App.localPut(Int(1), Bytes('EXTERNAL_APPCOUNT'), Int(0)),
Int(1),
),

)

© 2022 Coinspect 8

Debt can be created for the sender, without reserve validation.

Recommendation

Validate Foreign assets array for expected values.

Status

Followed recommendation.

© 2022 Coinspect 9

GARD-4 Liquidated user loses all collateral

Total Risk

High

Impact
High

Location
price_validator.py

Fixed
✔

Likelihood
High

Description

Malicious liquidators can send the remaining GARD from auction_price intended for
the user to the dev_fee address.

Gtxn[2].asset_amount() + Gtxn[3].asset_amount() + Gtxn[4].asset_amount() >=
Max(App.localGet(Txn.sender(), Bytes("GARD_DEBT")), auction_price()),

Gtxn[2].asset_amount() == App.localGet(Txn.sender(), Bytes("GARD_DEBT")),
Gtxn[3].asset_amount() >= Gtxn[4].asset_amount()/Int(5),

By having Gtxn[3] be a transfer of zero GARD, the liquidated user won’t receive any of
their corresponding assets.

Recommendation

Check that the liquidated user receives the remaining GARD from auction.

Status

Followed recommendation.

© 2022 Coinspect 10

GARD-5 has_voted is always true for Vote_id 0

Total Risk

Info

Impact
-

Location
Vote_lib.py

Fixed
Likelihood

-

Description

Since after the first call to init_vote_core the Vote_id is 1, this has no impact, but if
this changes in the future, it could lead to undesired behavior.

def has_voted(address: TealType.bytes, app_id: TealType.uint64) -> Expr:
Checks if `address` has voted in the last vote in `app_id`

current_vote_id = global_must_get(Bytes("Vote_id"), app_id)
last_voted_id = App.localGetEx(address, app_id, Bytes("Vote_id"))

We don't check hasValue because a user may *never* have voted in this
vote, so a 0 value check is sufficient
return Seq(last_voted_id, current_vote_id == last_voted_id.value())

Recommendation

Check for hasValue.

© 2022 Coinspect 11

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 12

